

Shri Shankaracharya Institute of Professional Management & Technology, Raipur						
SSIPMT		Department of Civil Engineering Class Test – II Session: JULY – DEC, 2021 Month –DECEMBER Semester – 5th Subject –Structural Engg. Design –I Code –C020511(020) Max Marks: 40 Time Allowed: 2 hrs. Max Marks: 40 Note: -Part A of each question is compulsory. Attempt any 2 from Part B, C & D in each question. Use of IS 456:2000 is permitted. Assume the suitable data if required and mention if clearly.Draw neat sketches wherever required.				
Q. No		Questions	Marks	Bloom's taxonomy	CO's	
•		Part-I				
A.	What do strain in	you understand by partial safety factor in LSM?The maximum steel at the outermost fiber is -	[4]	Understand	CO5	
В.	A RCC beam of 300 mm width and 500 mm effective depth is subjected to factored moment of 175 KN.m. If M20 concrete and Fe500 steel are used find the area of steel required.			Apply	CO4	
C.	Design t KN.m th effective LSM)	the section for a doubly reinforced beam to resist BM of 185 ne beam section is restricted to 350 X 700 mm. Assume 50 mm e cover. M20 concrete and mild steel reinforcement is used.(Use	[8]	Analyze	CO4	
D.	Design a subjecte support	a simply supported rectangular beam of clear span of 6 m and d to a super imposed load of 50 KN/m at service state consider width of 30 cm. Use M20 concrete and Fe415 steel.	[8]	Analyze	CO4	
		Part-II	••	4	1	
А.	What is calculat	a One-way slab and a two-way slab? Write the expression for ing effective flange width (b_f) for an isolated T-beam and label	[4]	Understand	CO5	
В.	A simp (effectiv reinforc beam is	bly supported RCC beam 250 mm wide and 450 mm deep ve) is reinforcement with 4-18mm dia. Bar. Design the shear cement if M20 grade of concrete and Fe415 steel is used and a subjected to a shear force of 150 KN at service state.	[8]	Apply	CO4	
C.	Determ The spa 800 K subject Width Overall Thickn	ine the flexural reinforcement requirement at midspan of T beam, an is 10 m and design moment at midspan under factored load is N.m. Consider Fe415 steel, M20 assume that the beam is ed to moderate exposure condition. of Flange = 1500 mm ess of Flange = 100 mm l height of the beam = 700 mm ess of web = 300 mm	[8]	Apply	CO4	
D	Design X 5 m carryin concre	a reinforcement concrete slab for a room of clear dimension 4 m a . The slab is supported on walls of width 300 mm. The slab is a live load of 4 KN/m ² and floor finish 1 KN/m ² . Use M 20 te and Fe 415 steel.	[8]	Analyze	CO4	

Shri Shankaracharya Institute of Professional Management & Technology, Raipur Department of Civil Engineering

Class Test – II. Session: July-Dec, 2021 Month – December

Semester - 5thSubject - Geotech EngineeringSub. Code - C020513(020)Time Allowed: 2 hrs.Max Marks: 50

Note: - In Part I & II, Question A is compulsory and attempt any two from B, C & D. Attempt all questions of part III.

SSIPMT

Q. No.		Questions		Marks	Levels of Bloom's taxonomy	CO's		
Part I								
A.	Explain the followings: (i) Permeability (ii) Ouick Sand Condition			[4]	Understand	CO2		
В.	Explain the factors affecting permeability of soil.			[8]	Understand	CO2		
C.	Calculate the coefficient of permeability of a soil sample 6 cm in height and 50 cm ² in cross section area, if a quantity of water equals to 430 cc passed down in 10 minutes under an effective constant head of 40 cm. On oven drying, the test specimen weighted 4.98N. Taking $G = 2.65$, calculate the seepage velocity of water during the test.				Evaluate	CO2		
D.). In a site reclamation project, 2.5 m of graded fill ($\gamma = 22 \text{ kN/m}^3$) were laid in compacted layers over an existing layer of silty clay ($\gamma_{sat} = 18 \text{ kN/m}^3$) which was 3 m thick. This was underlain by a 2 m thick layer of gravel ($\gamma_{sat} = 20 \text{ kN/m}^3$). Assuming that the water table remains at the surface of the silty clay draw the effective stress profiles for case (i) before the fill is placed and case (ii) after the fill has been placed.			[8]	Evaluate	CO2		
		Pa	rt II			T		
A.	Explain the followings:(i) Comparison between compaction and consolidation(ii) Mohr-Coulomb Theory			[4]	Understand	CO3		
В.	Explain Terzaghi's one dimensional consolidation theory with assumptions.			[8]	Understand	CO3		
C.	Derive the relationship between shear strength parameters and principal stresses.			[8]	Apply	CO3		
D.	Consolidated undrained test was performed on two identical samples. The observation at failure are as follows.			[8]	Evaluate	CO3		
	Stresses	Specimen 1	Specimen 2					
	Cell pressure (kN/m ²)	250	350					
	Deviator stress (kN/m ²)	180	240					
	Pore pressure (kN/m ²)	100	150					
	Determine the effective angle of shearing resistance and cohesion value.							
Part III								
(a)	Briefly discuss about the soil exploration methods.			[5]	Understand	CO5		
(b)	Describe soil samples and types of samplers.			[5]	Understand	CO5		

Shri Shankaracharya Institute of Professional Management & Technology, Raipur

SIPMT Department of Civil Engineering

Class Test - II Session: July-December, 2021 Month - December 2021

Semester – 5th Subject –HYDROLOGY &WATER RESOURCES ENGINEERING

Code -C020512 (020) Time Allowed: 2 hrs. Max Marks: 40

Note: -Part A is compulsory in each section. Attempt any two from part B, C and D. Assume suitable data, if required, and mention it clearly.

Q. No.	Questions	Marks	Levels of Bloom's taxonomy	CO's
	Section I			000
A	Write short notes on:1. Crop period and base period 2. Intensity of irrigation and G.C.A	4	Understand	CO3
B	Write short notes on 1. Lift irrigation 2. Drip irrigation 3. Ill effect of irrigation	8	Understand	CO3
C	A water course has a culturable commanded area of 1200 hectares. The intensity of irrigation for the crop A is 40% and for crop B is 35%, both the crops being rabi crops. Crop A has a kor period of 20 days and crop B has kor period of 15 days. Calculate the discharge of water course if the kor depth for crop A is 10 cm and for B it is 16cm.	8	Analyze	CO3
D	After how many days will you supply water to the soil in order to ensure sufficient irrigation of the given crop, if- (i) Field capacity of the soil = 28% (ii) Permanent wilting point = 13% (iii) Dry density of soil = 1.3 gm/cc (iv) Effective depth of root zone = 70cm	8	Analyze	CO3
	Section II			1
A	Write short notes on: (i) Watershed Canal (ii) Contour Canal (iii) Side Slope Canal	4	Understand	CO4
B	A channel section has to be designed for the following data Discharge Q = 30 Cumecs, silt factor f= 1.0 Side slope = $\frac{1}{2}$:1 Also find longitudinal slope.	8	Analyze	CO4
С	Design an irrigation channel on Kennedy's theory, to carry a discharge of 45 cumecs. Take $N= 0.225$ and $M= 1.05$. the channel has a bed slope of 1 in 5000.		Analyze	CO4
D	Design a trapezoidal shaped concrete lined channel to carry a discharge of 100 cumecs at a slope of 25 cm /km. the side slope of the channel are $1.5:1$, N =0.016 and limiting velocity.	8	Analyze	CO4

SSIP	Shri Shankaracharya Institute of Professional Managemen Department of Civil Engineering Class Test – II Session: July-December, 2021 Month – No Semester – 5th Subject – T.E Code – CO20514(020) Time Allowed: 2 hrs. Max Marks: 40 Note: - In Part I & II, Question A is compulsory and attempt an	t & Tech ovember ny two fro	nology m B, C & D.	
Q. No.	Questions	Marks	Levels of Bloom's taxonomy	CO's
	Part I			
A.	Explain Traffic Engineering.	[4]	Understand	CO2
В.	What is O&D study?What are the details to be collected in O&D study?	[8]	Understand	CO2
С.	What are traffic signs?Describe the functions & types of traffic signs.		Understand	CO2
D .	What are traffic signals?Write its advantages & disadvantages.	[8]	Analyse	CO2
	Part II	L	<u>I</u>	
A.	What is meant by the term Pavement.	[4]	Understand	CO3
B.	Explain briefly the various design factors that are to be considered in rotary intersection design.	[8]	Understand	CO3
C.	Difference between Flexible & Rigid Pavement.	[8]	Understand	CO3
D.	What is G.I value?Describe the group index method for design of flexible pavement.	[8]	Understand	CO3